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ABSTRACT4

A nested-grid model is constructed using the Finite-Volume dynamical core on the cubed5

sphere. The use of a global grid avoids the need for externally-imposed lateral boundary6

conditions, and a consistent solution is produced by using the same governing equations7

and discretization on the global and regional domains. A simple interpolated nested-grid8

boundary condition is used, and two-way updates use a finite-volume averaging method9

that conserves scalar quantities and vorticity. In particular, mass conservation in a two-10

way nested simulation is achieved by simply not updating the mass field, which eliminates11

the need for carefully-constructed flux boundary conditions. Despite the simplicity of the12

nesting methodology, nested-grid simulations of a series of common idealized test cases show13

favorable results, as the large-scale solutions are not corrupted by the nested grid. We also14

show evidence that the nested grid is able to improve the coarse-grid solution, even beyond15

the boundaries of the nest.16
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1. Introduction17

Global models have many advantages for climate simulation and medium-range weather18

prediction. Global models do not need externally-imposed lateral boundary conditions19

(BCs), and so there are no issues with boundary errors contaminating the solution, nor20

inconsistency between the model dynamics and that of the imposed BCs, two major prob-21

lems for limited-area models (Warner et al. 1997). Global models also allow synoptic- and22

planetary-scale features to be better represented and to interact with any smaller-scale fea-23

tures that may be resolved by the model. This scale interaction is particularly important for24

studies of orographic drag and deep convection on the general circulation, and in forecasting25

hurricanes and other phenomena that feed back onto their large-scale environment.26

However, running a global model with uniform grid spacing at scales needed to fully27

resolve these features is still impractical using today’s computers. Regional climate models28

(RCMs; Giorgi and Mearns 1999) typically require years- or decades-long simulations of29

phenomena that may only be dozens of kilometers wide, and accurate hurricane intensity30

forecasting may require resolving features only a few kilometers wide. For this reason many31

RCMs and hurricane models use a limited domain with boundary conditions supplied by a32

global model with comparatively low resolution and only available at coarse time intervals.33

The resolution, discretization, and even the governing equations can differ between the global34

and limited-area model, and these inconsistencies lead to boundary errors. The features35

resolved by the limited-area model are also unable to feed back onto the global domain,36

which is perhaps the most significant disadvantage of a limited-area domain for RCMs and37

medium-range forecasting.38

A better solution would be to use a global model with a locally refined grid, which39

would represent the large scales globally, use the higher resolution only over the area of40

interest, and allow the two scales to interact. While any grid refinement will cause errors as41

disturbances propagate through the refined region, we expect that having the refined and42

coarse regions in the same model (complete with the same dynamics and discretization), and43
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having the large-scale data continually supplied to the refined region, would yield smaller44

boundary errors than if a regional model were to be forced with boundary data from an45

independent, non-interacting global model. The simplest and most common approach is46

to use a stretched or deformed grid, a deformed uniform-resolution grid having more grid47

points or cells clustered over the region of interest. On the opposite side of the globe (which48

we are presumably less interested in) there are fewer gridpoints, as depicted in Figure 1.49

This capability already exists in several models, including that described in this paper; see50

Courtier and Geleyn (1988) and Fox-Rabinovitz et al. (2006) for other examples. However,51

if the stretching is enough that the grid size varies significantly, new problems can occur.52

The timestep of the entire grid will be controlled by the smallest grid spacing in the refined53

region, which increases the computational expense of the simulation. Further, since physical54

parameterizations are often scale-dependent, unless special parameterizations that adapt to55

the grid spacing are used, they may only be appropriate for certain parts of the model56

domain. Finally, the resolution on the side opposite to the refined region may be so much57

more coarse than in the rest of the domain that disturbances passing through this region58

may no longer be well-enough resolved to be represented accurately. The resulting errors59

can propagate into the refined region if the simulation is long enough.60

A much less common approach is to use a two-way nested model (Figure 1), with the61

global domain acting as the coarse, “parent” grid and a regional domain acting as the nested62

grid, with nested-grid BCs periodically applied from the global grid. Both grids use the63

same model dynamics and discretization, so the only inconsistency arises from the different64

resolutions of the two grids. Applying different timesteps and physical parameterizations65

between the two grids is trivial, and the coarse grid domain need not be altered to allow66

nesting; in particular grid nesting does not require a decrease in global model resolution67

anywhere, and nests can be placed at an arbitrary number of locations on the globe, or even68

within one another. Two-way nesting allows for the nested grid to influence the global grid69

by periodically “updating” or replacing the global solution by the nested-grid solution where70
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the grids coincide. Nested grids are also more versatile than stretched grids, as any number of71

nested grids can be used, grids can be nested within one another, and nests can be rectangular72

instead of just square. Drawbacks of two-way nesting are that the grid boundary is a73

discontinuous refinement and creates more localized errors than does a gradual refinement,74

and that interaction between the refined and coarse regions only occurs at defined intervals75

(typically more frequently than the externally-imposed BCs for limited-area models), while76

for a stretched grid this interaction occurs naturally at every timestep.77

The authors are aware of a few studies using two-way global-to-regional nested models.78

Lorenz and Jacob (2005) nested a regional gridpoint model in a spectral global model for79

a ten-year climate integration, in order to better represent the topography of the maritime80

continent. Their results were promising—a global decrease in zonally-averaged temperature81

biases was observed in the nested model compared to the single-grid global model—but no82

further results were shown and no further research using this model appears to exist. Inatsu83

and Kimoto (2009) found a result similar to, but less compelling, than that of Lorenz and84

Jacob (2005), using a similar nesting methodology with a nest over northeast Asia. Chen85

et al. (2011) used a two-way nested RCM which placed a nest over eastern China, using the86

same gridpoint model for both the global and nested grids. They found a local reduction in87

temperature bias, but did not examine the effect of two-way nesting outside of the nested88

region.89

Dudhia and Bresch (2002) presented a test of global-to-regional two-way nesting using90

the global version of the Pennsylvania State University-National Center for Atmospheric Re-91

search Mesoscale Model (MM5) for a three-day weather forecast for North America. The 40-92

km grid-spacing nested grid was able to resolve features that the 120-km grid-spacing global93

domain could not, with apparently a minimum of distortion at the nested-grid boundary.94

Similar capability exists in the Weather Research and Forecasting (WRF) model (Richard-95

son et al. 2007). The TM5 model (Krol et al. 2005) and the GEOS-CHEM model (Bey et al.96

2001) are both “offline” chemistry and transport models which can use two-way global-to-97
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regional nesting, but are not dynamical models and rely on reanalysis data or model output98

from other sources to operate.99

In this paper we present a two-way nested idealized model using the Finite-Volume (FV)100

formulation of Lin (2004, henceforth L04), discretized on the cubed-sphere geometry of101

Putman and Lin (2007, henceforth PL07). This dynamical core has been very successful102

in a number of applications, including climate simulation (Delworth et al. 2006; Donner103

and coauthors 2011), weather prediction (Lin et al. 2004; Atlas et al. 2005), and seasonal104

hurricane prediction (Zhao et al. 2009; Chen and Lin 2011). Both the nested and coarse105

grids use the same FV core, ensuring consistency between the grids. Any of a number of106

schemes for the grid coupling can be used in our nested-grid model, although we will find that107

favorable results can be attained using simple, standard methods, including a straightforward108

method for conserving mass on the global coarse grid.109

The model will be tested using several common idealized test cases. The first is the110

baroclinic instability test case of Jablonowski and Williamson (2006) which tests the ability111

of the nesting to permit individual disturbances to pass into and out of the nested grid112

region and to yield a reasonable solution on timescales of one to two weeks. The second is113

the idealized climate integration of Held and Suarez (1994) which tests the ability of the114

nested model to preserve the climatology produced during a multiple-year integration. A115

third uses real topography and initial conditions to demonstrate how grid nesting can improve116

the coarse-grid’s representation of vortex shedding in the lee of the Island of Hawaii, even117

beyond the extent of the nested grid. Two more tests are performed with a shallow-water118

version of the model to demonstrate how well the FV core and grid geometry maintains119

solutions of the governing equations.120

Section 2 describes the FV core, cubed-sphere grid geometry, and the nesting methodol-121

ogy. Section 3 describes the results from the test cases. Section 4 concludes the paper.122
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2. The Nested Grid Model123

a. Finite-Volume Dynamical Core and cubed-sphere grid124

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-125

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, henceforth126

LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman (2007).127

This solver divides a hydrostatic atmosphere into a number of vertical layers, each of which128

is then integrated treating the pressure thickness and potential temperature as scalars. Each129

layer is advanced independently, except that the pressure gradient force is computed using130

the geopotential and the pressure at the interface of each layer (Lin 1997). The interface131

geopotential is the cumulative sum of the thickness of each underlying layer, counted from132

the surface elevation upwards, and the interface pressure is the cumulative sum of the pres-133

sure thickness of each overlying layer, counted from the constant-pressure top of the model134

domain downward. Vertical transport occurs implicitly from horizontal transport along La-135

grangian surfaces. The layers are allowed to deform freely during the horizontal integration.136

To prevent the layers from becoming infinitesimally thin, and to vertically re-distribute mass,137

momentum, and energy, the layers are periodically remapped to a pre-defined Eulerian co-138

ordinate system.139

The governing equations in each horizontal layer are the vector-invariant shallow-water1

equations:

∂δp

∂t
+∇ · (Vδp) = 0

∂δpΘ

∂t
+∇ · (VδpΘ) = 0

∂V

∂t
= −Ωk̂ ×V −∇

(
κ + ν∇2D

)
− 1

ρ
∇p

∣∣∣
z

1The individual layers are not true shallow-water layers since the potential temperature, and thus density,

is not homogeneous in each layer; however, since the density only explicitly enters through the pressure

gradient force in (3) and (4) the equations solved are identical to the shallow-water equations with the

(hydrostatic) pressure in place of height.
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where the prognostic variables are the pressure thickness δp of a layer bounded by two140

adjacent Lagrangian surfaces, which in this hydrostatic system is the mass of the layer;141

the potential temperature Θ; and the vector wind V. Here, k̂ is the vertical unit vector.142

The other variables are diagnosed: the density ρ, kinetic energy κ = 1
2
‖V‖, divergence143

D, pressure p, and absolute vertical vorticity Ω. Finally, the prescribed higher-order ∇4
144

divergence damping strength is given by ν.145

The system can be horizontally discretized in orthogonal coordinates, as on the latitude-146

longitude grid (LR97); however, on the cubed sphere an orthogonal coordinate yields cells147

which become dramatically smaller near the corners of the cube. We instead adopt the148

gnomonic coordinate of PL07, in which coordinate lines are great circles. This coordinate149

yields more uniformly-sized cells over the whole sphere, but is non-orthogonal. As a result,150

the prognosed covariant wind components u and v differ from the diagnosed contravariant151

wind components ũ and ṽ which are required for the transport operator. Define V =152

ũex+ ṽey, where ex and ey are the local unit vectors of the coordinate system. The covariant153

components of the wind are then u = V · ex and v = V · ey, and the kinetic energy is154

κ = 1
2
(uũ + vṽ). The angle α between the local unit vectors is given by sin α = ‖ex × ey‖;155

in an orthogonal coordinate system, α = π/2.156

The horizontal discretization is derived using a finite-volume integration about a 2D

quadrilateral grid cell with area ∆A and over a timestep of length ∆t, with the winds stag-

gered on a D-grid (Figure 2). The discretized equations are as in Putman (2007), modified

for a non-orthogonal coordinate system:

δpn+1 = δpn + F
[
ũ∗, ∆t, δpy

]
+ G

[
ṽ∗, ∆t, δpx

]
(1)

Θn+1 =
1

δpn+1

{
Θnδpn + F

[
ũ∗, ∆t, (Θδp)y] + G

[
ṽ∗, ∆t, (Θδp)x]} (2)

un+1 = un + ∆t
[
Y (Ωx)− δx

(
κ∗ − ν∇2D

)
+ P̂x

]
(3)

vn+1 = vn + ∆t
[
X(Ωy)− δy

(
κ∗ − ν∇2D

)
+ P̂y

]
. (4)

In these equations and for the remainder of the article δp, Θ, and other scalar variables157
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are understood as cell-averaged values, and winds and fluxes as face-averaged values. The158

superscript n and n + 1 represent the time-levels of the prognostic variables. The flux159

operators F , G, X, and Y use the contravariant C-grid winds ũ∗ and ṽ∗, defined at the n+ 1
2

160

timelevel. The difference operator is defined as δxη = η
(
x + ∆x

2

)
−η

(
x− ∆x

2

)
, and similarly161

for δy. The discrete Laplacian is ∇2 = δ2
x + δ2

y .162

The fluxes through a cell face are denoted X(ũ∗, ∆t, η) and Y (ṽ∗, ∆t, η) for an arbitrary163

scalar η. The fluxes are computed using the piecewise-parabolic method (PPM; Colella and164

Woodward 1984) using the monotonicity constraint of L04. The monotonicity constraint165

not only eliminates unphysical overshoots in the solution but also acts as a diffusive fil-166

ter that is more physically consistent than the ad-hoc scale-selective Laplacian diffusion or167

hyperdiffusion operators common in many numerical models.168

The flux divergences (referred to as “outer operators” in PL07 and LR96) in each coor-

dinate direction are:

F
[
ũ∗, ∆t, η

]
= − ∆t

∆A
δx

[
X(ũ∗, ∆t, η)∆y sin α

]
G

[
ṽ∗, ∆t, η

]
= − ∆t

∆A
δy

[
Y (ṽ∗, ∆t, η)∆x sin α

]
for cell face lengths ∆x, ∆y, so that ∆x sin α is the length of a cell face in the direction

perpendicular to the flux through that face. The advective-form inner operators, denoted

by a superscript x or y, are:

ηx =
1

2

[
η +

η + F
[
ũ∗, ∆t, η

]
1 + F

[
ũ∗, ∆t, 1

]]

ηy =
1

2

[
η +

η + G
[
ṽ∗, ∆t, η

]
1 + G

[
ṽ∗, ∆t, 1

]]
.

Using the inner operators to produce a scalar field which is then used in the outer operators169

in (1)–(4) produces a symmetric scheme which cancels the splitting error (LR96, section 2).170

Using advective-form operators for the inner operator does not affect mass conservation,171

since the outer operators are still flux-form, but allows the scheme to preserve an initially172

uniform mass field in a nondivergent flow and thus is more physically consistent. The173
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denominator of the second term in the inner operators is a divergence-correction term (PL07).174

For a particular variable, we use the same computation for X and Y in both the inner and175

outer operators, which avoids a potential instability (Lauritzen 2007) in the absence of a176

monotonicity constraint.177

The transported kinetic energy κ∗ is simply 1
2

[
X(ũ∗, ∆t, u) + Y (ṽ∗, ∆t, v)

]
; using this178

form avoids the Hollingsworth-K̊aallberg instability (Hollingsworth et al. 1983, LR97 pg179

2481). The finite-volume absolute vorticity and divergence are given by Ω and D, respec-180

tively. Finally, the pressure gradient forces P̂x and P̂y are computed as in Lin (1997), by181

integrating around a 2D plane in the vertical.182

The time-stepping (LR97) uses a forward-backward procedure to advance the cell-averaged183

values and the D-grid winds. First, the half-timestep C-grid winds ũ∗, ṽ∗ are computed using184

first-order vorticity and kinetic energy fluxes, and a pressure gradient force computed using185

mass and potential temperature advanced to the half-timestep, also using first-order upwind186

fluxes. The half-timestep mass and potential temperature are then discarded. A similar187

procedure is performed to advance the D-grid winds, mass, and potential temperature a188

full timestep, using the full PPM fluxes computed from the half-timestep C-grid winds, and189

again using a pressure gradient force computed with pressure and temperature advanced to190

the n + 1 timelevel.191

Nearly any vertically-monotonic quantity can be used as the base for the Eulerian coor-192

dinate; here, we use a 32-level hybrid σ−p terrain-following vertical coordinate, in which for193

given constants ak, bk for each layer interface k = 1, . . . , N + 1 and N layers, the pressure at194

each Eulerian layer interface is pk = ak +bkps for surface pressure ps = pN+1 = pT +
∑N+1

k=1 pk195

and pressure at the model top pT = 2.16404 Pa ; the new δpk in the kth layer is pk+1 − pk.196

The resulting surface pressure is the same, and so this procedure conserves air mass. The197

remapping of other variables is done using piecewise-parabolic subgrid reconstructions in198

the Lagrangian layers, and then analytically integrating these over each Eulerian layer; full199

details are in L04. The full dynamical core does not exactly conserve total energy, but an200
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energy “fixer” can be applied if necessary, turning all of the lost energy (including the lost201

kinetic energy) into heat. The remappings then not only act as vertical mass and momen-202

tum transport but also apply frictional heating to the atmosphere. Remapping need not be203

applied at every dynamical timestep, and indeed can be applied once every hour or even less204

frequently.205

b. Grid nesting methodology206

The nested grid is simply a refinement of one of the faces of the gnomonic cubed-sphere:207

for a refinement ratio r each coarse-grid cell is split into r2 cells by dividing the great-circle208

arcs bounding each cell into r equal segments. Our nested grids are aligned with the coarse209

grid, making grid-coupling substantially more accurate and less complicated, but does force210

the nested grid to remain on one panel of the cube.211

Many methods exist for nested-to-coarse grid coupling (cf. Zhang et al. 1986; Warner212

et al. 1997; Harris and Durran 2010). However, we will show later that our nested-grid213

model produces satisfactory solutions while using only simple nested grid BCs and two-way214

updating methods. Our boundary conditions are simply linear interpolation of the coarse-215

grid data, for all prognostic variables (including the half-timelevel C-grid winds) into the216

halo (ghost) cells of the nested grid. The BCs are updated every nested-grid timestep by217

linearly interpolating the coarse-grid solution between two different times.218

Mass conserving two-way update methods do exist (cf. Zhang et al. 1986; Kurihara et al.219

1979), but these require computation of integrals for the update and the use of often-delicate220

interpolated fluxes at the nested-grid boundary to correctly conserve mass. We use a much221

simpler approach: since δp is the mass of each layer, we simply do not include it during222

the two-way update. The coarse-grid pressure is undisturbed during the update and mass223

is trivially conserved. However, since δp also determines the vertical coordinate (even after224

vertical remapping, since the surface pressure gives the lowest coordinate surface) a consistent225

update requires us to remap the other variables—u, v, and Θ—from the nested grid’s to the226
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coarse grid’s coordinates, using an appropriate extrapolation if the nested grid’s surface227

pressure is less than the coarse grid’s surface pressure. Since two-way updating already228

overspecifies the coarse-grid solution, and since pressure is tightly coupled to the other229

variables, we do not expect that not updating δp will substantially degrade the coarse-grid’s230

solution. All simulations described in this paper will use this “mass-conserving remapping231

update”, and are all observed to conserve mass on the coarse grid to machine precision. Since232

the FV core does not exactly conserve momentum, total energy, or enstrophy, we make no233

attempt to do so in our nesting methodology. Conservation of microphysical species or tracer234

mass is outside the scope of this study.235

Two-way updating is done using temperature T = ΘpR/cp , where R is the gas constant236

and cp the specific heat at constant pressure, instead of Θ. Updating T was found to yield237

fewer grid artifacts, likely because unlike Θ it is not a direct function of pressure. The238

update is a simple areal average: the updated coarse-grid cell-averaged temperature is the239

average of that of the r2 corresponding nested-grid cells it is split into. For the winds, we240

perform a piecewise-constant finite-volume average of the r nested-grid-cell faces along the241

coarse-grid face whose D-grid wind is being updated. Since the grids are aligned and each242

nested-grid-cell constructed out of a particular coarse-grid cell has the same dimensions, no243

weighting is needed when performing the average. This averaging update is more consistent244

with our finite-volume discretization than would a simple pointwise average, and the use245

of piecewise-constant finite-volume averages for the winds means that the update conserves246

vorticity.247

While the nested model can use any integer value for the refinement ratio r, we will use248

a factor of 3 throughout this paper, as is traditional in atmospheric science.249
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3. Test cases250

a. Shallow-water tests251

While only a few idealized test cases exist for three-dimensional global models, an entire252

suite of test cases exists for two-dimensional non-linear shallow water models (Williamson253

et al. 1992). While we do not intend to present a full set of test cases for the shallow water254

version of the FV core we will present two cases which measure the nested model’s ability255

to preserve the desirable large-scale characteristics of the single-grid’s solution.256

The FV core becomes a shallow water model when run with a single layer, a uniform257

potential temperature, and with the assumption that there is no stress from an overlying258

layer. Vertical remapping is unnecessary, and when performing mass-conserving two-way259

updating u and v are updated directly to the coarse grid.260

1) Balanced geostrophic flow261

Test case 2 of Williamson et al. (1992) is a flow initially in geostrophic balance, and so any262

deviations from the initial condition are considered errors. This test is sensitive to spatial263

changes in grid structure and in particular to the abrupt refinement at the nested-grid’s264

boundary. We present tests of the model using a c48 grid—each face of the cubed-sphere is265

48 grid-cells wide and has a mean grid spacing of about 210 km, or 2 degrees—which are266

run first for five days to create an internally-balanced initial condition (Figure 3). Errors are267

then characterized as the difference between the solution after another five days of integration268

time and this “spun-up” initial condition. The simulation uses an internal “large” timestep269

of 30 min, identical on both grids, corresponding to the interval between vertical remappings270

in a three-dimensonal model and to the interval between times used for the nested-grid BCs271

and for performing two-way updates. The coarse grid uses four “small” timesteps per large272

timestep, each corresponding to ∆t for one advance of the dynamics, so the timestep for the273

dynamics is 7.5 min. The nested grid (depicted by a quadrilateral in Figure 3 and subsequent274
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figures) is centered in one of the equatorial panels of the cubed-sphere, and is a refinement275

of the coarse grid by a factor of three (r = 3). The nested grid uses 12 small timesteps per276

large timestep. Two balanced flows, whose initial height fields (equal to δp/g) are depicted277

in Figure 3, are used: one with a purely zonal flow and a more stringent test with a flow278

field rotated 45◦ from zonal to allow the strongest part of the flow to pass over the corners279

of the cubed sphere and of the nested grid.280

Although the error norms are typically twice as large in the nested-grid simulations as in281

the single-grid simulations (Table 1), they are still very low, representing errors of less than282

one part in one thousand. The absolute errors are smaller than many single-grid models of283

similar resolution to our coarse grid; for example, the “G5” test of the icosahedral finite-284

volume shallow-water model of Lee and MacDonald (2009), of comparable resolution to our285

c48 simulations, yields `1 and `2 errors no smaller than 10−4. The errors in our nested-grid286

simulations were also comparable to those of the single-grid Yin-Yang multi-moment model287

of Li et al. (2008).288

289

2) Rossby-Haurwitz wave290

The Rossby-Haurwitz wave, Williamson test case 6, is an exact solution to the linearized291

shallow-water equations. This case is most interesting because the wavenumber-4 Rossby-292

Haurwitz wave is unstable (Thuburn and Li 2000), and truncation and roundoff errors will293

eventually grow and cause the wave to break. While the FV core maintains the wave well294

beyond 60 d even at coarse resolutions—LR97 demonstrated stability through 60 d even for a295

2.5 deg resolution simulation, which we have also found for a c48 cubed-sphere simulation—296

many other uniform-resolution global models do not claim stability beyond 14 d (cf. Lee and297

MacDonald 2009; Li et al. 2008; Bernard et al. 2009; Lauritzen et al. 2006). While we do298

not expect our nested-grid model to preserve the wave for longer than a few weeks because299
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of the unavoidable error introduced by the nested grid, we expect to retain stability at a low300

c48 resolution for at least 14 d, and longer at higher resolutions.301

The c48 test case uses the same parameters as in the previous section. The two-way302

nested solution then maintains the wave for 14 d (Figure 5a) and later breaks down. If303

instead we use a c180 grid, in which the large timestep is reduced to 5 min on both grids304

and the nested grid made 180 grid cells wide in both directions (so as to cover nearly the305

same area as in the c48 simulations), the wave is better maintained at 14 d (Figure 5b), and306

does not break until after 21 d (not shown).307

b. Jablonowski-Williamson baroclinic instability test308

The baroclinic instability test case of Jablonowski and Williamson (2006) is a common309

test for three-dimensional global models to show that a reasonable baroclinic wave can be310

simulated in a perturbed baroclinically-unstable flow. In our nested-grid simulations we311

wish to show that two-way nesting does not appreciably distort the solution compared to a312

single-grid solution, and may even improve the representation of the baroclinic wave on the313

coarse grid.314

The initial condition is as in Jablonowski and Williamson (2006). The cubed-sphere is315

rotated so that the initial perturbation, at 20 degrees east longitude and 40 degrees north316

latitude, is centered in one of the panels. The nested grid (seen in Figure 6) is then placed317

so that it covers the deepest low in the resulting baroclinic wave train at t = 10 d.318

Our c90 simulations use a large timestep of 20 min on both grids, with 10 and 21 small319

timesteps per large timestep on the coarse and nested grids, respectively. The nested grid is320

a 3:1 spatial refinement of the coarse grid and is 96 grid cells wide in both directions. The321

model uses 32 levels in the vertical, using the same setup as in L04.322

Results of the c90 simulations are seen in Figure 6. The nested grid is not causing323

any noticable distortion of the baroclinic wave compared to the single-grid c90 solution;324

further, additional structure has been generated by the nested grid in the deepest low’s325
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center, particularly in the 850 hPa vorticity field. A single-grid c270 simulation—one with326

the same resolution globally as does the nested grid in the c90 simulation—shows that327

the additional structure in the c90 nested simulation is real and not due to grid artifacts,328

although the c270 simulation has had more time at the higher resolution to develop and so is329

more tightly-wound than the nested-grid simulation. Examination of the nested-grid solution330

(Figure 7a,b) does show some low-amplitude distortion of the solution near the nested-grid331

boundary compared to the c270 simulation (Figure 7c,d), particularly in the vorticity field,332

but this does not substantially affect the solution. The nested-grid boundaries do not disrupt333

the strong gradients along the low’s cold front, which is important because one of the major334

advantages of the FV core (cf. LR97, section 4) is the preservation of sharp gradients, and335

an effective nested-grid methodology should maintain this property. Using one-way nesting336

(not shown) does not make a substantial difference to the nested-grid solution, and would337

of course have no effect on the coarse-grid solution.338

A series of c180 simulations were performed (Figure 8) using the same model parameters339

as the c90 simulations except that the large timestep was 10 min on both grids and used340

a nested grid 180 cells across to cover approximately the same area as in the c90 nested341

simulation. Again, the nested-grid solution is no worse than the single-grid solution, and342

again the nested grid is passing additional structure to the coarse grid which compares well343

with a c540 control simulation.344

The error introduced by grid nesting can be quantified by comparing solutions to a high-345

resolution solution taken as “truth”. As in Jablonowski and Williamson (2006) we will346

compute error norms in the surface pressure field on the global grid as a function of time.347

Here, we use a c540 single-grid simulation as our reference solution, and for comparison have348

also used a pair of c48 simulations. Both the single-grid and nested-grid solutions show349

increasing error growth during the first two weeks of the simulation (Figure 9) before the350

error “saturates” as both the reference and the lower-resolution simulations equilibrate and351

mix out their potential vorticity gradients. Both single- and nested-grid simulations show352
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convergence at increasingly high resolutions, with no pathological error growth due to the353

nested grid. However, the error in the c48 nested-grid simulation is noticably larger than354

that of the c48 single-grid simulation during the first week, which is attributed to a spurious,355

smaller baroclinic wave train excited by the nested-grid boundary. This disturbance becomes356

increasingly small at higher resolutions, and is much smaller than the primary wave train at357

later times in the c48 simulation.358

c. Held-Suarez climate integration359

A common test for global dynamical cores is a multi-year climate integration using the360

Held-Suarez forcing (Held and Suarez 1994) to simulate the effects of idealized, zonally-361

symmetric diabatic heating and surface drag in a dry dynamical core. Here, we will test362

whether a nested grid disrupts the climate statistics of a single-grid model. We first present363

results from a pair of c48 simulations, which use the same grid (and indeed the same dynam-364

ical core) as in the GFDL AM3 (Donner and coauthors 2011) model, and has an average365

grid-cell width of about 200 km. The large timestep is 20 min on both grids, with 4 and 12366

small timesteps per large timestep on the coarse and nested grids, respectively. The remain-367

der of the model configuration is as for the c48 Jablonowski-Williamson test cases, except368

that the model grid is not rotated, and that the nested grid is again centered in one of the369

equatorial panels.370

A useful diagnostic in the Held-Suarez simulations is the vertical velocity ω = dp
dt

, which

allows us to view the strength of the meridional overturning circulations. The vertical

velocity is not a prognostic variable in the FV core, but can be computed from other fields.

Since at the bottom of the kth layer the pressure is pk =
∑k

j=1 δpk + pT , where a subscript

indicates the vertical layer index counting from the top, the total derivative of p becomes
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(with use of the mass continuity equation)

ωk =
dpk

dt
=

k∑
j=1

d

dt
δpk =

k∑
j=1

(
∂

∂t
δpk + Vk · ∇δpk

)
(5)

=
k∑

j=1

(−∇ · (Vkδpk) + Vk · ∇δpk) =
k∑

j=1

−δpk∇ ·Vk, (6)

or that the vertical velocity of each Lagrangian surface is the mass-weighted sum of the371

divergence of all overlying layers2.372

Zonal means over the last 2000 d from c48 simulations, after a 200 d model spin-up373

period, are shown in Figure 10. The zonal means are remarkably similar between the two374

simulations, and the differences between the simulations (bottom row) are small; the same is375

true for various eddy covariances (Figure 11). Note that the greatest difference between the376

nested and single grid simulations is not in the tropics, where the nested grid is located, but377

in the mid-latitudes. Furthermore, there is little difference between our results and those378

of L04, which used the latitude-longitude FV core: the most apparent difference between379

our c48 simulations and L04’s 2◦ simulations (of similar resolution) is that our sub-tropical380

descent (Figure 10a,b) is stronger, and our sub-polar ascent weaker. Mid-latitude eddy381

covariances are also slightly stronger in our simulations (Figure 11), likely due to reduced382

implicit numerical diffusion in the cubed-sphere core.383

Differences between the nested- and single-grid simulations become more apparent when384

examining deviations from the zonal means; since ideally the time-averaged fields should385

be zonally-symmetric, deviations from the zonal means are characterized as errors. These386

errors are most pronounced in the near-surface ω field, particularly at the cubed-sphere edges387

(Figure 12a,b), but are at worst an order of magnitude smaller than typical zonal-mean values388

of ω in the troposphere (Figure 10a,b). Errors are also apparent at the nested-grid boundary389

but these are again acceptably small and in fact smaller than the noise at the cube edges.390

At 500 hPa (Figure 12c,d) the errors at the cube edges are less extensive, and no errors due391

to the nested grid are apparent. Other fields show little distortion due to the nested grid:392

2This is the discrete analogue to the formula for ω in section 3.5.1 of Holton (2004).
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for example, the 500 hPa u (Figure 12e,f) shows little deviation from zonal symmetry due to393

grid structure. In both the nested and single-grid simulations the asymmetry between the394

northern and southern hemispheres, as well as deviations from zonal symmetry, decreases395

for longer simulations, although the grid errors are still present.396

Similar results are found from a pair of c90 simulations, which are set up the same as the397

c48 simulations except that the large timestep is now 10 min on both grids. The zonal means398

(Figure 13) are very similar to the c48 simulations (Figure 10). The difference between the399

nested and single-grid c90 simulations is smaller than in the c48 simulations. The noise in400

the ω field (Figure 14a–d) due to the cubed-sphere edges and nested grid are smaller than401

in the c48 simulations, and again grid errors are imperceptible in other fields (Figure 14e,f).402

d. Lee vortices403

The final test simulates vortex shedding in the lee of the Island of Hawaii (Smith and404

Grubǐsić 1993) to determine whether the nested grid can introduce disturbances downstream405

of the nest caused by features that would not be resolved by the coarse grid alone. We do not406

aim to precisely reproduce observed vortices on a particular date, but to instead show that407

vortices which could not appear in a single-grid simulation can be supported on the coarse408

grid in a two-way nested simulation. These simulations are initialized using a T574 analysis409

from the National Centers for Environmental Prediction at 0000 UTC on 1 August 2010 and410

use 1-minute USGS topography. To prevent surface winds from being unrealistically strong,411

the surface drag from the Held-Suarez test described above has been applied; otherwise the412

model is inviscid and adiabatic. Two global grids are used: a c360 simulation with a 5 min413

large timestep and 10 small timesteps per large timestep, and a c120 simulation with a 10 min414

large timestep and 10 small timesteps per large timestep. A c120 nested-grid simulation was415

also performed using a 3:1 spatial refinement, so that the nested grid has the same resolution416

as the c360 simulation does globally, and 30 small timesteps; again, the large timestep is417

identical on the coarse and nested grids. The remainder of the model is formulated as in the418
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Held-Suarez test case.419

By t = 72 hr there is a clear train of lee vortices apparent in the surface vorticity field420

in the c360 simulation (Figure 15), extending west-southwest downstream from the Island421

of Hawaii. Shedding occurs throughout the 96 hr-long simulation. We expect that the422

c120 nested simulation should have vortices form on its nested grid, but we also find that423

the nested grid’s vortices are able to propagate out of the coarse grid and remain coherent424

downstream, and are slowly diffused by the dissipation in the numerics. Again, vortex shed-425

ding continues throughout the simulation. By contrast, the vortices in the single-grid c120426

simulation are much weaker and poorly defined, indicating that at c120 resolution (roughly427

75 km) the 150-km wide Island of Hawaii is not well-enough resolved for the processes pro-428

ducing lee vortices to act. The poorly-resolved topography in the single-grid c120 simulation429

creates much less of the baroclinically-produced vorticity needed on the flanks of the Island430

for vortex generation: the absolute value is at most 1.9× 10−5 s−1 at t = 72 hr, compared to431

55.1×10−5 s−1 in the single-grid c360 simulation and 25.8×10−5 s−1 on the coarse grid of the432

nested-grid c120 simulation. (On the nested grid, the maximum vorticity is 74.4× 10−5 s−1.433

This value is larger than in the single-grid c360 case because the terrain smoothing is not434

as strong on the nested grid, and so the mountain is somewhat steeper.) The vorticity that435

does appear in the single-grid c120 simulation are transients caused by the impulsive startup436

of the simulation, and continuous shedding does not occur.437

4. Summary438

Regional models have many disadvantages for climate simulation and for weather predic-439

tion on timescales of more than a few days, because unlike global models they require the440

specification of boundary conditions taken from a model which almost certainly has differ-441

ent dynamics and numerics. However, the limits of computational resources make globally-442

uniform high-resolution modeling impractical for most purposes. Here, we present a two-way443
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global-to-regional nested version of the FV core allowing for better resolution over a lim-444

ited area using the same model equations and discretization throughout. Our nested-grid445

boundary conditions and nested-to-coarse two-way update are quite simple: the boundary446

conditions are simple linear interpolation from the coarse-grid, and two-way updating is sim-447

ply a vorticity-conserving average to corresponding coarse-grid cells of all variables except448

mass, allowing us to easily achieve mass conservation on the coarse grid.449

Despite the simplicity of our nesting methodology, nested-grid simulations of idealized450

shallow-water and three-dimensional nested-grid flows demonstrate little degradation of the451

large-scale flow and better-simulated small-scale features compared to uniform-resolution452

simulations. In particular, despite an abrupt factor-of-three refinement at the nested-grid453

boundary the errors in a 2000-d Held-Suarez climate integration are no worse at the nest’s454

boundary than they are at the edges of the cubed-sphere global grid. Other simulations show455

little distortion of the coarse-grid solution due to the presence of the nested grid; indeed,456

there is evidence that features resolved by the nested grid can appear on the coarse grid.457

This suggests that nested-grid models may be effective for including the effects of small-458

scale features on the larger-scale circulation, a result which was found in the nested-grid459

simulation of Lorenz and Jacob (2005). Examination of the nested-grid solutions reveals460

that there are few boundary-condition problems involving noise or reflections generated by461

disturbances attempting to exit the nest.462

Nesting so far has been implemented and tested in idealized, dry simulations; work is463

planned to extend the nesting to simulations with full physics and to enable moving grids464

which can track a propagating disturbance, such as a tropical storm or pollutant plume. The465

nesting described in this paper is planned to be implemented in GFDL HiRAM (Zhao et al.466

2009; Chen and Lin 2011).467
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1 5-day `1 and `2 error norms for the shallow-water balanced geostrophic flow572
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Zonal Rotated
`1 `2 `1 `2

Single-grid c48 1.68×10−5 2.26×10−5 4.05×10−5 4.75×10−5

Nested-grid c48 3.11×10−5 3.98×10−5 8.66×10−5 1.16×10−4

Table 1. 5-day `1 and `2 error norms for the shallow-water balanced geostrophic flow test
(Williamson test case 2).
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11 2000-d averaged c48 Held-Suarez simulation eddy statistics: single-grid sim-618

ulation (a) meridional flux of zonal momentum (contour interval 10 m2 s−2);619

(c) meridional heat flux (2.5 K m s−1); (e) zonal wind variance (20 m2 s−1,620
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12 2000-d averages, with zonal means removed, for (a,b) lowest model-level ω/ω0627

(contour interval 0.01); (c,d) 500 hPa ω/ω0 (0.1); and (e,f) 500 hPa u/u0628

(0.01), in c48 single-grid (a,c,e) and nested-grid (b,d,f) simulations. Charac-629

teristic velocities are ω0 = 10 mb d−1 and u0 = 10 m s−1. In all panels the630
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(a) and (b), and negative values are plotted in gray. 42632

13 As in Figure 10 but for c90 simulations. 43633

14 As in Figure 12 but for c90 simulations. 44634

15 Surface vorticity (contour interval 10−5 s−1, negative values in gray, values635
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Fig. 1. Methods for locally refining a global grid. Left: A stretched cubed-sphere grid,
whose smallest face has been scaled by a factor of three in both directions. Center: reverse
of stretched grid showing coarsest face, which covers more than half the sphere. Right: a
nested grid in an unstretched grid; the nest is a three-to-one refinement of the coarse grid.
Thin lines represent local coordinate lines; heavy lines represent cube edges and nested-grid
boundaries.
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α

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle α is that between the covariant and contravariant components; in orthogonal
coordinates α = π/2.
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Fig. 3. Initial height field for the shallow-water balanced geostrophic flow test (Williamson
test case 2). Contour interval is 400 m. ’Rotated’ in (b) refers to the flow rotated 45◦

from zonal. In this and all other figures gray curves indicate boundaries of the cubed-sphere
panels and of the nested grid, when present.
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Fig. 4. Absolute 5-day height errors for the shallow-water balanced geostrophic flow test
(Williamson test case 2). Contour interval is 0.1 m, negative values dashed, zero contour
suppressed.
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Fig. 5. Height at 14 d in the shallow-water Rossby-Haurwitz wave test (Willianson test
case 6, contour interval = 2 m) for a (a) c48 nested grid simulation and (b) a c180 nested
grid simulation.
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Fig. 6. Jablonowski-Williamson test case solutions at c90 resolution for a single-grid simu-
lation (panels a, d) and a nested-grid simulation (panels b, e), and at c270 resolution (panels
c, f). Panels (a–c) show surface temperature (K, color) and pressure perturbation (contour
interval 4 hPa, negative values dashed); panels (d–f) show 850 hPa absolute vorticity (posi-
tive values in color, negative values contours of interval 20−5 s−1). Here, the nested grid is
outlined in red.
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Fig. 7. Jablonowski-Williamson test case solutions on the nested grid at c90 resolution
for a two-way nest (panels a, b) and over the same area for the c270 resolution single-grid
simulation (panels e, f). Panels (a,c,e) show surface temperature (K, color) and pressure
perturbation (contour interval 4 hPa, negative values dashed); panels (b,d,f) show 850 hPa
absolute vorticity (positive values in color, negative values contours of interval 10−5 s−1).
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Fig. 8. As in Figure 6 but at c180 resolution (panels a–d) and c540 resolution (panels e,f).
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Fig. 9. Jablonowski-Williamson test case surface-pressure `2 errors relative to a c540 simu-
lation. Single-grid simulations are indicated by crosses; nested-grid simulations are indicated
by filled squares.
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Fig. 10. 2000-d averaged c48 Held-Suarez simulation zonal means: single-grid simulation
(a) ω (contour interval 5 hPa d−1), (b) u (5 m s−1), (c) v (0.25 m s−1), (d) T (10 K). Panels
(e–h) depict the same as in (a–d) except for the nested-grid simulation. Panels (i–l) depict
the difference between the nested and coarse-grid simulations; contour intervals are (i) 0.5
hPa d−1, (j) 0.5 m s−1, (k) 0.02 m s−1, and (l) 0.1 K. In all panels negative values are dashed
and the zero contour has been suppressed.
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Fig. 11. 2000-d averaged c48 Held-Suarez simulation eddy statistics: single-grid simulation
(a) meridional flux of zonal momentum (contour interval 10 m2 s−2); (c) meridional heat
flux (2.5 K m s−1); (e) zonal wind variance (20 m2 s−1, largest contour 260 m2 s−1); and
(g) temperature variance (5 K2, largest contour 40 K2). Panels (e–h) depict the same as
in (a–d) except for the nested-grid simulation. Panels (i–l) depict the difference between
nested and coarse-grid simulation; contour intervals are (i) 0.5 m2 s−2, (j) 0.2 K m s−1, (k)
2 m2 s−1, and (l) 0.5 K2. In all panels negative values are dashed and the zero contour has
been suppressed.
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Fig. 12. 2000-d averages, with zonal means removed, for (a,b) lowest model-level ω/ω0

(contour interval 0.01); (c,d) 500 hPa ω/ω0 (0.1); and (e,f) 500 hPa u/u0 (0.01), in c48 single-
grid (a,c,e) and nested-grid (b,d,f) simulations. Characteristic velocities are ω0 = 10 mb d−1

and u0 = 10 m s−1. In all panels the zero contour has been suppressed for clarity, as has
been the grid geometry in (a) and (b), and negative values are plotted in gray.
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Fig. 13. As in Figure 10 but for c90 simulations.
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Fig. 14. As in Figure 12 but for c90 simulations.
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Fig. 15. Surface vorticity (contour interval 10−5 s−1, negative values in gray, values above
5 × 10−5 s−1 not plotted) at t = 72 h in simulations initialized at 0000 UTC on 1 August
2010. Hawaii is at center-right in each panel. Dotted line in left-most panel shows where
the nest would be in the nested-grid c120 simulation.
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